Elementary maths for GMT

Calculus

Part 3.2: Numerical methods

Outline

- Interpolation
- Finding roots
- Finding roots more easily

Interpolation

- Sometimes you have only a discrete number of points of a function f
- For example, a table of values is given or a series of measurements has been conducted
- The task is to find values, or at least an approximation, in between the known points. This is often done by finding a polynomial of the smallest possible degree that passes through the given points.

Interpolation

- Find a polynomial

$$
p_{k}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k}
$$

of the smallest possible degree k that passes through given points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots\left(x_{n}, y_{n}\right)$ (called support points)

Linear system of equations

- Filling all the support points results in a set of $(n+1)$ linear equations with k unknowns

$$
\left\{\begin{array}{c}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2}+\cdots+c_{k} x_{0}^{k}=y_{0} \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2}+\cdots+c_{k} x_{1}^{k}=y_{1} \\
\vdots \\
c_{0}+c_{1} x_{n}+c_{2} x_{n}^{2}+\cdots+c_{k} x_{n}^{k}=y_{n}
\end{array}\right.
$$

- This is a lot of work to solve
- Therefore we will show a different method

Lagrange interpolation

- Suppose we have $(n+1)$ support points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots\left(x_{n}, y_{n}\right)$ then the Lagrange interpolation p is

$$
p(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{n}(x)
$$

with

$$
p_{j}(x)=y_{j} \prod_{\substack{k=0 \\ k \neq j}}^{n} \frac{x-x_{k}}{x_{j}-x_{k}}
$$

p_{j} written out:

$$
p_{j}(x)=y_{j} \cdot \frac{x-x_{0}}{x_{j}-x_{0}} \cdot \frac{x-x_{1}}{x_{j}-x_{1}} \cdots \frac{x-x_{j-1}}{x_{j}-x_{j-1}} \cdot \frac{x-x_{j+1}}{x_{j}-x_{j+1}} \cdots \frac{x-x_{n}}{x_{j}-x_{n}}
$$

Example

- Find the Lagrange interpolation through 3 support points

$$
\begin{aligned}
& p_{j}(x)=y_{j} \prod_{\substack{k=0 \\
k \neq j}}^{2} \frac{x-x_{k}}{x_{j}-x_{k}} \\
& p_{0}(x)=y_{0} \cdot \frac{x-x_{1}}{x_{0}-x_{1}} \cdot \frac{x-x_{2}}{x_{0}-x_{2}} \\
& p_{1}(x)=y_{1} \cdot \frac{x-x_{0}}{x_{1}-x_{0}} \cdot \frac{x-x_{2}}{x_{1}-x_{2}} \\
& p_{2}(x)=y_{2} \cdot \frac{x-x_{0}}{x_{2}-x_{0}} \cdot \frac{x-x_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Example

- Find the Lagrange interpolation through the support points $(0,0),(-2,4),(3,6)$

$$
\begin{aligned}
p_{0}(x) & =y_{0} \cdot \frac{x-x_{1}}{x_{0}-x_{1}} \cdot \frac{x-x_{2}}{x_{0}-x_{2}}=0 \cdot \frac{(x+2)}{2} \cdot \frac{(x-3)}{-3}=0 \\
p_{1}(x) & =y_{1} \cdot \frac{x-x_{0}}{x_{1}-x_{0}} \cdot \frac{x-x_{2}}{x_{1}-x_{2}}=4 \cdot \frac{(x-0)}{-2} \cdot \frac{(x-3)}{-5}=\frac{2}{5}\left(x^{2}-3 x\right) \\
p_{2}(x) & =y_{2} \cdot \frac{x-x_{0}}{x_{2}-x_{0}} \cdot \frac{x-x_{1}}{x_{2}-x_{1}}=6 \cdot \frac{(x-0)}{3} \cdot \frac{(x+2)}{5}=\frac{2}{5}\left(x^{2}+2 x\right) \\
p(x) & =p_{0}(x)+p_{1}(x)+p_{2}(x) \\
& =\frac{2}{5}\left(x^{2}-3 x\right)+\frac{2}{5}\left(x^{2}+2 x\right)=\frac{4}{5} x^{2}-\frac{2}{5} x
\end{aligned}
$$

Example

- Find the Lagrange interpolation through the support points $(0,0),(-2,4),(3,6)$

$$
p(x)=\frac{4}{5} x^{2}-\frac{2}{5} x
$$

Finding roots

- Suppose you want to find the roots (zero crossings) of a function $f(x)$
- Given an interval $\left[\mathrm{x}_{0}, \mathrm{x}_{1}\right]$ such that on one side of the interval the function is above the x-axis and on the other side of the interval below the x-axis, there is at least one root in the interval
- An approximation of this root can be found by performing a linear interpolation between the two sides of the interval, $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$, and calculating the intersection of this line with the x-axis

Finding roots

Finding roots: Regula falsi

- Using Lagrange interpolation we find that the interpolation polynomial (a line in this case) is:

$$
p(x)=f\left(x_{0}\right) \cdot \frac{x-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \cdot \frac{x-x_{0}}{x_{1}-x_{0}}
$$

- The intersection point of this line and the x-axis is ($c, 0$), thus:

$$
\begin{aligned}
p(c) & =f\left(x_{0}\right) \cdot \frac{c-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \cdot \frac{c-x_{0}}{x_{1}-x_{0}}=0 \\
c & =\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}
\end{aligned}
$$

- Using this approximation of the root we can narrow the search, recursively

Finding roots: Regula falsi

Finding roots: Regula falsi

- If $f(c)=0$, the root is found (at $\pm \varepsilon$)
- If $f(c) f\left(x_{0}\right)<0$, the root is to the left of c, thus iterate the process with x_{0} and $x_{1}=c$
- If $f(c) f\left(x_{0}\right)>0$, the root is to the right of c, thus iterate the process with $x_{0}=c$ and x_{1}

Finding roots: Picard iteration

- The regula falsi iteration needs two initial points bracketing a root. Picard iteration uses only one point.
- We need to change the equation

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

into

$$
\begin{equation*}
g(x)=\mathrm{x} \tag{2}
\end{equation*}
$$

with g chosen so that the solutions to equation 1 are equal to the solutions to equation 2

- By taking $x_{n+1}=g\left(x_{n}\right)$, and beginning with x_{0} as an initial guess we approximate the root
- If you want to understand how this works, make a drawing and realize that an iteration basically mirrors the function in the line $y=x$

Example

- Let assume the function $f(x)=x^{3}-3 x+1$
- Set f to zero, then isolate x to find a possible g $g(x)=\frac{1}{3}\left(x^{3}+1\right)$
- Thus, $x_{n+1}=g\left(x_{n}\right)=\frac{1}{3}\left(x_{n}{ }^{3}+1\right)$
- Therefore taking $x_{0}=1$ results in the following iterations

$$
\begin{aligned}
& x_{1}=g\left(x_{0}\right)=\frac{2}{3} \approx 0.6667 \\
& x_{2}=g\left(x_{1}\right)=\frac{35}{81} \approx 0.4321 \\
& x_{3}=g\left(x_{2}\right)=\frac{574316}{1594232} \approx 0.36
\end{aligned}
$$

Example

Example

Example

Finding roots: Picard iteration

- Drawback
- There is no guarantee that the process converges, and finds a specific root
- Taking a different initial guess can result in finding a different root

Example

- For example, taking as initial guess $x_{0}=1.6$ will give a divergent process

Finding roots: Newton-Raphson

- Similar to Picard iteration but converges faster
- The roots of $f(x)=0$ are approximated by defining g as

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

and iterating toward the solution using

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)}
$$

Example

Example

